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Abstract

Purpose — To study heat transfer kinetics at the fiber scale in order to describe injection of liquid
metal through a fibrous perform initially situated in a preheated mould, which is one of the various
methods used in order to produce metal matrix composite materials (MMCs).

Design/methodology/approach — The first part presents a preliminary study in a static case to
describe heat transfer kinetics between a fiber and the matrix in the case of a sudden contact of both
components initially set up at different temperatures. This model enables to study the influence of
the various parameters of the problem on heat transfer kinetics with phase change. In the second part,
we present a modeling which takes into account the metal convection within the pores of the preform.

Findings — The numerical results of these two models justify the instantaneous thermal equilibrium
assumption classically admitted to describe MMCs manufacturing methods. The results of this
dynamic microscopic model are compared with the results issued from a single temperature
macroscopic model to justify the methodological approach and the choice of the microscopic domain
geometry representative of the MMCs manufacturing process.

Research limitations/implications — This first numerical model at the microscopic scale deals
with the study of heat transfer between fibers and a pure metal. Next step will be the extension of this
study to the preform infiltration by a metal alloy. Injection of matrix alloy implies the appearance of
phenomena generated by segregation during phase changes.

Originality/value — The results of simulation tests, making use of the usual conditions of MMCs
processing, show pretty good agreement with those of macroscopic models describing the
anisothermal flow of a pure metal through a porous medium. From this coherence and from the results
of the microscopic models as well, the hypothesis of instantaneous thermal equilibrium between fibers
and metal (widely used in the literature to study the production of MMCs by infiltration of the liquid
metal through the fibrous reinforcement) is justified. Moreover, it will be possible to extend it to the
study of infiltration by an alloy, taking then into account thermal and solutal coupled transfers inside
the study domain defined in the present work.
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metal matrix, the fibrous reinforcement and the mould are generally brought to initial
temperatures lower than the solidification temperature of the metal.

These experimental conditions involve local solidification phenomena from the very
beginning of injection. In order to avoid costly foundry experiments, theoretical and
numerical models, which take into account the strong coupling between mass and heat
transfer phenomena, have been performed and applied to the case of infiltration by a
single pure metal. In these macroscopic numerical models, the metal saturated preform
is assumed to be a continuous medium, and numerical modeling is based on
simultaneous and consistent resolutions of Darcy law and continuity equations, with
attention to phase change phenomena (Mortensen et al., 1989; Lacoste et al., 1993).

In actual industrial applications, metal alloys are classically used instead of pure
metal, then the modelization of the injection is more complex, due to the alloy
segregation phenomena: for such alloy injection modelization, it may be tried to
simulate the liquid alloy flow at the fiber scale, and then to impose a spatial scale
change to describe the process at macroscopic scale.

Our present study deals with pure metal injection at the fiber scale: the objectives of
this model are to verify the hypothesis about characteristic thermal equilibrium time,
and to test the methodological approach which starts from study at the fiber scale and
extends at the macroscopic scale.

This work has been divided into two parts. The first part presents a preliminary
study in a static case where convection phenomena resulting from the metal flow
around the fibers are not taken into account. Similar modeling has already been
developed with the aim to study the evolution of the solidification front: the studied
domains are made up of one fiber (Khan and Rohatgi, 1994) or several fibers (Guslick
et al., 1999; Arquis and Caltagirone, 1998) surrounded with metal. In these models the
two components (matrix and fiber) were initially set up at the same temperature. In our
study, the aim is to describe heat transfer kinetics between a fiber and the matrix in the
case of a sudden contact of both components initially set up at different temperatures.
This model enables to study the influence of the various parameters of the problem on
heat transfer kinetics with phase change and the numerical results justify the
instantaneous thermal equilibrium assumption classically admitted to describe MMCs
manufacturing methods. In second part, we present a modeling which takes into
account the metal convection within the pores of the preform. The results of this
dynamic microscopic model are then compared with the results issued from a single
temperature macroscopic model in order to confirm the instantaneous thermal
equilibrium assumption and to justify the methodological approach and the choice of
the microscopic domain geometry representative of the MMCs manufacturing process.

Static study

Geometry, nitial and boundary conditions

The considered geometry in order to schematize the composite is a one-dimensional
parallel periodical network alternately constituted of strata representing, respectively,
the fiber and the metal (Figure 1). The stratum depth is related to the porosity of the
corresponding fibrous reinforcement. By symmetry, the studied domain (Figure 2) in
this model is actually constituted of two parts, one representing “the fiber” (length ;)
and the other “the metal” (length k). Length /; equals to the 1/2 depth of the
reinforcement (i.e. 1/2 diameter of the fiber) and length /s is defined from /; and from
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Figure 1.
Modelization of the
composite

Figure 2.
Studied domain

the porosity of the fibrous preform. Symmetries are expressed by nil flux conditions on
the domain boundaries. At the initial instant, the fiber and the pure metal have
different temperatures amounting to 7, and 7y, respectively (typically Top < Teol
and Ty > Teo)-

Dimensionless formulation
The dimensionless formulation of the problem has been achieved from the following
reference parameters:

+ length ;

+ thermodynamic characteristics of the fibers: ¢; (specific heat) and a; (thermal
diffusivity);

+ temperature difference (T, — 7o) between the solidification temperature of the
metal (T, and the initial temperature of the fiber (7%y); and

+ latent heat of the metal (L).

Dimensionless characteristics (mentioned by a prime) of the problem are the following
ones:

K =ux/ly; = (az/lf)t; d=a;/a;; T'=(T— To»)/(Teo1 — Tox); Ste=c/(Tso1 — Tor)/L

where Ste is the Stefan number, characteristic of the phase change phenomenon and ¢
the phase index of the liquid metal (@ = 1), the solid metal (z = s) or the fiber (@ = f).

Numerical results
The numerical model is based upon the discretisation of energy equation (1) with the
very classical finite volume method (Patankar, 1980).

oT
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a™ is the thermal diffusivity of the equivalent medium and @’ is a source term which
includes the enthalpy release due to phase change.

The method is based on a fixed grid of the studied domain and the source term is
calculated using an iterative method (Voller and Prakash, 1987; Voller and
Swaminathan, 1991; Mantaux et al., 1995).

As a first step, the equilibrium time 7, that is to say duration to bring the whole
domain (fiber and metal) to thermal equilibrium, is calculated as a function of the initial
temperature of the metal for peculiar given values. Then, from this reference case, we
study the influence of the different parameters (thermodynamic characteristics of the
constituents, Stefan number, porosity) on the equilibrium time.

The energy balance is assumed to be reached when dimensional temperature
difference AT between the hottest and the coldest points of the domain becomes less
than e = 10~ 2K. If it is obvious that the duration for thermal equilibrium increases as
¢ decreases, our tests showed that the feature of all the results we are going to present
here is not affected by this e arbitrary choice.

Reference case. After the classical tests of convergence (Figure 3) in order to validate
the model, numerical tests have been achieved with the following parameters:

d=d =d;=1;, $ =08 and Ste =13.8
Moreover, all the simulations of the section are obtained with a dimensionless time step
and a dimensionless space step, respectively, fixed at A¢ =10~ 7; Ay’ = 0.25.

By considering the initial dimensionless metal temperature 7}y, as varying from 1
to 1.4 per 0.00125 step, we simulated the corresponding heat evolution of the system.
Figure 4 summarizes the obtained results in terms of equilibrium time and ultimate
solid metal fraction. As a matter of fact, the solid metal fraction is related to a simple
calorimetrical assessment, and so, a monotonic duration variation could be expected;
however, this variation is far more complex and leads us to distinguish six parts,
numbered from 1 to 6 from the lowest initial metal temperatures Th,,. A, B,C,D and E
symbolize the boundaries between the different parts. The duration curve for
equilibrium exhibits two peaks which are called “peak n°1” for point B and “peak n°2”
for point D.
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Figure 3.

Test of convergence:
influence of the time
step AY
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Figure 4.

Duration variation for
thermal equilibrium and
solid metal fraction vs
metal initial temperature
for the reference case

Figure 5.

Evolution of the solid
metal fraction in the
domain until equilibrium
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Highlighting the influence of phase change. A thorough study of heat transfer kinetics is
necessary to explain these results. Figure 5 shows the evolution of the solid metal
fraction up to the equilibrium time for points located in the six parts described on
Figure 4.

In part 1 (where Ty, is near Ty,), thermal equilibrium time stead low. We notice
that the final solidification fraction always equals to 1, which means that, at
equilibrium, metal is completely solidified. Heat transfer kinetics shows that as soon as
contact is established between fibers and metal (at the end of a dimensionless time near
10) the whole metal solidifies.

From point A (beginning of part 2), thermal equilibrium time increase. In this part,
the phase change from liquid to solid state is slower. This phenomenon increases with
Tom-

From point B (beginning of part 3), the ultimate solid metal fraction is no longer
equal to 1; when equilibrium is reached, the metal is thus only partly solidified. When

O increases the ultimate solid metal fraction is less and less important and
equilibrium time is lower and lower.

From point C (beginning of part 4), heat transfer kinetics shows that in the first time,
like in the previous part, a part of the metal is solidified when in contact with the fiber;
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afterwards a part of the solidified metal is then re-liquefied (metal melting), a
phenomenon which does not occur in the two previous parts. This melting
phenomenon is all the more important since 77, increases.

From point D (beginning of part 5), the metal part which has been solidified in the
first instants has completely disappeared at equilibrium: the metal is ultimately in a
liquid state. The more 77, increases, the lower is the quantity of solidified metal.

In the last part (part 6), phase change phenomena have almost disappeared and,
therefore, have no longer any influence on equilibrium time. This time does not evolve
any more and its value is the same as the one obtained for points in part 1.

It is worthy of note that the “wavy shape” of the equilibrium time curve between
points B and D is nothing but a typical numerical phenomenon due to the finite volume
method used to treat phase change problem (Bell and Wood, 1983).

The complexity of the duration evolution for equilibrium according to the initial
metal temperature has led us to study separately the influence of different parameters
such as Stefan number, liquid and solid diffusivity or porosity.

Influence of Stefan number. Compared to the results issued from the reference case
study (Ste = 13.8), influence of Stefan number (with variations of the heat of
solidification of the metal L) on duration for thermal equilibrium according to the initial
liquid metal temperature for a constant temperature difference T, — Tor has been
investigated (Figure 6). Stefan number increases when energy release during phase
change decreases, leading to a reduction of the T}y, interval on which the ultimate solid
metal fraction stands partial. On Figure 6, this result is expressed by narrowing the
first and second peak interval as Sfe increases, point D keeping almost the same
location. Evolution of duration for thermal equilibrium of the domain according to 77,
is very slightly disturbed by the variations of Stefan number. A displacement of the
different parts of the curve is only observed.

Influence of metal’s thermal diffusivity. Influence of solid metal’s thermal diffusivity
al, by keeping constant parameter @) is now estimated (Figure 7(a)). The equilibrium
time strongly decreases in the first half of the domain (which corresponds to the first
three parts shown in Figure 4) when a/ increases. This decrease of thermal equilibrium
time results from the increasing diffusivity (generated by increasing of the thermal
conductivity) in the solid metal, which is the prevailing phase of the first part of the
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Figure 6.

Influence of Stefan
number on the duration
variation for thermal
equilibrium vs initial
temperature of the liquid
metal




HFF
15,8

814

Figure 7.

Influence of the metal
thermal diffusivity on the
duration variation for
thermal equilibrium vs
initial temperature of the
liquid metal; (a) thermal
diffusivity of the solid
metal; and (b) thermal
diffusivity of the liquid
metal

—_ =

[T (O TN

(=R -
L I

DN X
oS O
L L

~
(e
L

Dimensionless equilibrium time

[\
(=R ]
I

1.1 1.2 1.3
Initial dimensionless metal temperature, T’

(@)

[

Dimensionless equilibrium time

0 T U T
1 1.1 12 13 14
Initial dimensionless metal temperature, T o
(b)

curve (77, < 1.22). In the second part (77, > 1.22), as solid fraction is low, the
influence of a/ decreases.

Similarly, by making a; diffusivity of the liquid metal vary and by keeping
parameter @, constant, thermal equilibrium time of the domain strongly decreases in
the second half of the domain, which corresponds to the last three parts shown in
Figure 4 (initial metal temperatures 77, more than 1.22) when a; increases (Figure 7(b)).
Indeed, the liquid phase prevails in the second part of the curve and consequently this
phenomenon has a preponderant influence in this part.

Influence of porosity. Porosity is the last parameter chosen for this study (Figure 8).
The reference length chosen as dimensionless parameter is the one characteristic of the
fiber, that is to say /{ which has been set to 1. Therefore, a decreasing porosity is
significant of a more compactness of the fibrous preform. Increasing porosity generates
increasing of the metal’s quantity (1’2) , which is correlated on the curves by an increase
of equilibrium time. Furthermore, when /), increases, the quantity of heat brought by
the metal matrix increases while energy due to the fibers remains constant. The initial
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temperature 7", for which the final solidification fraction remains equal to 1, is then
lower and lower, which explains the earlier and earlier appearance of the first peak
associated to the increase in porosity.

Presence of equilibrium times peaks. The presence of such peaks may be explained
by the phase change which occurs at an imposed and constant temperature (pure
metal). As a matter of fact, the domain point where the phase change does occur is the
phase change temperature 77 ; = 1, and conductive transfer is proportional to the
temperature gradient. The higher is this gradient, the more important is the flux
energy and the faster is the heat transfer. Any volume implied in a phase change
absorbs an important quantity of energy L and consequently slows down heat
exchanges between solid and liquid parts. These exchanges are all the slower since the
temperature gradient is low between the solid/liquid interface and the other parts of the
domain. This slackening effect is emphasized twice:

(1) first when the maximum temperature 77, for which the matrix is both entirely

solid and isothermal (peak #°1), is reached; and
(2) second when the minimum temperature 77, for which the matrix is both
entirely liquid and isothermal (peak 7#°2), is reached.

Practical illustration. This first study enables us to understand heat transfer kinetics
when fibers and matrix are brought into contact in a static case, and to calculate the
duration for thermal equilibrium of both components. Previous studies about
processing of MMCs by metal injection through fibers have shown the existence of a
front zone, from the beginning of impregnation onwards, where metal is at its
solidification temperature 7%, (Lacoste et al., 1993). Inside that zone, fibers at an initial
temperature 7T are impregnated by a metal at temperature T For a fibrous perform,
constituted of graphite fibers with a porosity of 0.8, initially preheated to 200°C and
impregnated by pure aluminium, the computed thermal equilibrium time making use
of the static model is about 10 °s. So, for a flowing metal’s speed through the preform
taken as 10~ 'm.s™ %, the thermal equilibrium domain is less than one micron large.
Thus, the instantaneous equilibrium assumption, classically used in the single
temperature models applied to liquid-state MMC processing, seems to be justified.
However, the assumption of a static model somehow restricts its application.
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Figure 8.

Influence of porosity on
the duration variation for
thermal equilibrium vs
initial temperature of the
liquid metal
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Figure 9.
Studied domain for the
dynamic case

The aim is now to define a representative microscopic study domain and to take into
account convection phenomena generated by the metal’s flow through the fibrous
network when processing MMCs by injection methods. This dynamic model also
justifies the choice of a representative domain geometry to study manufacturing
process, and some preliminary results of metal alloy injection model were obtained
with this microscopic domain geometry (Cantarel, 2004).

Dynamic study

Microscopic model

The considered geometry in order to modelize the fibrous preform is similar to the one
described in the previous paragraph. The domain is made up of a periodical stacking
up of parallel layers. By symmetry, the domain geometry, which allows the study of
the metal flow, reduces to a bi-dimensional pipe bounded by two parallel slabs whose
thickness are those of a half stratum (Figure 9). The bi-dimensional problem consists in
studying a two-phases flow involving two non-miscible fluids (pure metal and air),
coupled with phase change phenomena (metal melting and solidification).

The final purpose is to compare the results of this microscopic dynamic model with
those of a macroscopic model previously published in the literature (Mortensen et al,
1989; Lacoste et al, 1993). At the opposite of the previous, and somehow more
phenomenological, static study where dimensionless parameters have been used, here,
dimensional parameters are used.

Assumption on metal/atr interface. The metal flow between the slabs is assumed to
be laminar (Re. = 2 and Re < 1). To describe the metal flow, the interface position at
each instant must be known. In a rigorous and complete approach, this study would
require to know the surface tensions between the fluids and the fiber wall (ofiq/metal €t
Osolidair) and the surface tensions between the liquid metal and air (o metal/air) which
verify Young’s equation:

Osolid/air — Osolid/metal = Trmetal/air COS 60 2)

where 6 represents the contact angle between the liquid metal and the solid
reinforcement.

These parameters indeed depend not only on the present fluids, here liquid metal
and air, on the nature of the solid (which has been defined from the characteristics of
fibers) but also on flow conditions (pressure and temperature). Taking into account
these parameters in the models is very tricky and must be studied thoroughly from an
experimental as well as from a numerical point of view (Fukai et al., 1995).

The interface modeling also faces difficulties due to the boundary conditions of the
problem. If for a one phase flow, velocities are nil at the slab walls, this condition is not
verified at the triple point (metal/fiber/air) in the case of a two phase flow because of the
interface displacement. A classical method consists in admitting the possibility of

= .
Liquid metal __L_ 1/2Fibre 21,
—_—




the metal sliding on the edge and in giving sliding velocities in the neighborhood of the
contact between the interface and the edges (Van Quy, 1971).

Our purpose here is the study of heat exchanges during the flow. If exchanges with
air are negligible versus exchanges between the wall and the metal, a strict knowledge
of the geometry of the metal front is no more necessary. The assumption that we have
chosen is to consider that the metal front remains plane with a displacement velocity
equaling the metal’s injection velocity. From afar of the metal front, an adherence
condition to solid reinforcement has been imposed in both air and liquid. Imposing a
sliding to the contact of fibers close to the triple point at the metal/air interface as well
as the geometry of the metal front has a very slight influence on heat exchanges, which
we verified with various computations (not presented here).

Numerical model. The metal flow is described by the mass balance equation (3) and
Navier-Stokes equation in which effects generated by gravity are neglected
(equation (4)):

V-U=0 3)

p(aa—[l{+(U~V)U) = —Vp + uV?U )

where U is the velocity and p the pressure; U and p are, respectively, the density and
the dynamic viscosity of the liquid metal. The metal is considered as a newtonian fluid
whose viscosity does not depend on temperature. The solidified metal viscosity is
considered as infinite. To solve the flow problem taking into account modifications due
to the apparition of solidification, we introduce finely the Brinkman equation (5).

p(&+(U'V)U> = —Vp+uViU - LU ®)
ot K

(r/K)U being a penalization term which allows to define the nature of the medium: if
the terms of K are equal to zero, metal is liquid and if the terms of K tend to infinity,
metal is solid. The coupling equations (3) and (5) are solved with a hybrid method
where the projection method (Goda, 1978) is coupled with an augmented Lagrangian
method (Fortin and Glovinski, 1982). Indeed, the augmented Lagrangian and the
projection method are less efficient because of the strong density and viscosity
gradients near the interface. The algorithm of this hybrid augmented
Lagrangian-Projection method is detailed in Vincent and Caltagirone (1999).

The heat equation (6) with phase change phenomena is solved from a source term
model (Mantaux et al, 1995) and a T.V.D. scheme for the convective term (Sweby,
1984). The complete formulation of the numerical method used for the heat transfer
problem is described by Del Borrello and Lacoste (2003).

pC<%+U-VT>:V-()\VT)+Q 6)

A is the tensor of thermal conductivity of the medium (pc) is the volumetric heat
capacity of the medium and @ is a source term which includes the enthalpy release due
to phase change.
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The thermal contact resistances between the fibers and the metal matrix as well as
radiation are neglected. The flow and the heat transfer problems are then coupled,
which modelizes phase change phenomena during MMCs processing.

Initial and boundary conditions. In addition to the assumptions on the metal/air
interface (paragraph 3.1.1), the other initial and boundary conditions of the problem are
the following ones:

+ the metal is injected parallel to strata at a constant velocity V, and at Ty,
temperature, constant in time and greater than the phase change temperature of
the metal Ty,

 fibers are initially at a 7 temperature; and

*+ because of the studied geometry the problem comes down to the study of a metal
flow between two slabs whose thickness is the thickness of a “half fiber”. Owing
to symmetry conditions, the upper and lower boundaries of the domain are
adiabatic boundaries.

Micro-macro comparison
The aim of this part is to compare the results of macroscopic theoretical models (what
we shall shortly recall), to those issued from the present microscopic dynamic model.
Monodimensional macroscopic model. The macroscopic theoretical models are
based upon the computation of a continuity equation coupled with Darcy’s law and of
the energy equation with phase change phenomena (Mortensen ef al,, 1989; Lacoste
et al., 1993). We studied a 1D configuration with adiabatic mould walls for which
analytical solutions exist. This is a single temperature model. Assuming the metal
saturated preform to be an homogeneous medium whose equivalent thermal
conductivity A* and equivalent specific heat (pC)* are given by relations (7) and (8):

N =dn b+ 21— @) (7
(PO)" = (pO)~ b+ (pO);- (1 — ¢) ©)

where A, and A; are the thermal conductivities of the metal and of the fibers
respectively; (pC), and (pC); are the specific heats of the metal and the fibers,
respectively, and ¢ is the porosity of the fibrous preform. Parameters A, and (pC),, are
calculated from relations similar to relations (7) and (8) with the liquid or solid metal
parameters, and from the liquid/solid proportion in the considered volume instead of
fiber parameters and porosity.

The metal flow through the fibrous preform is described by Darcy in equation (9)
and mass balance in equation (10).

Vz—f—{a—p 9
mox
V-V=0 (10)

where K is the permeability of the fibrous preform and V Darcy velocity.

Assuming the fibrous preform to be dimensionally stable and the metal to be
uncompressible, the metal/air interface position, X,(f), at an instant ¢ is given as
follows:



Vo-t
Xp(t) = -2~ 11
@) ) 11)

where V is the metal injection velocity and ¢ the fibrous preform porosity. If 1 is
high enough, the conduction in the flow direction may be neglected as compared with
advection heat exchanges. The heat problem, therefore, comes down to the solving of
the following equation:

0T 0T
(pC) T (pC)ng (12)

where (pC); represents the specific heat of the liquid metal.

Two cases must be studied: the case for an initial fibers temperature Tof
higher than T (absence of phase change phenomena) and the case where Ty is lower
than the solidification temperature of the metal T, (presence of phase change
phenomena).

For the case where Ty; > T, the metal is not solidified when in contact with fibers.
The heat problem makes a thermal front to appear, which is delayed compared with
the metal front (Figure 10). Its position Xt is given by (13).

= $(pC);
(pO)*
For the case where Ty < Ty, there are phase change phenomena. The heat problem

makes two heat fronts to appear, which separate three distinct parts whose inside the
temperatures are constant (Figure 11):

(1) part 1: downstream the metal front where the preform has not been
impregnated yet; the temperature remains to the initial temperature 7oy,

Xm (13)

(2) part 2: constituted by the preform impregnated by a partly solidified metal; in
this part the temperature reaches to the phase change temperature T, and
simultaneously the solid metal fraction Fs is constant; and

(3) part 3: where the preform has been impregnated by the entirely liquid metal; the
temperature arises to Ty, the injection temperature.

Thermal front

Metal front

v

Temperature

Xr Xm
Position
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Figure 10.
Impregnation of a fibrous
preform by a liquid metal
for an adiabatic case when

the initial temperature of
fibers is higher than the
metal solidification
temperature
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Figure 11.

Impregnation of a fibrous
preform by a liquid metal
for an adiabatic case when
the initial temperature of
fibers is lower than the
metal solidification
temperature

Table 1.
Parameters example for
the MMCs processing

Considering a simple calorimetric balance allows to calculate the F's proportion of
solidified metal in part 2 (equation (14)) as well as the X4 position of the thermal front
(equation (15)).

_ A= ) pO)(Tsot — Tor)
¢Ls

_ (PO
(pO)* + (1 = $)pCy (F2=fir)

Fg

(14)

X7 (15)

Comparison of 2D microscopic and 1D macroscopic models. In a first step, results of the
2D microscopic dynamic model, with realistic parameters from a point of view of the
production process (Table I), are shown.

Preliminary simulation have been performed to test the convergence. Figures 12
and 13 exhibit the influence of the space steps (Ax and Ay) in a case without phase
change. Afterwards, for all the other simulations presented in the section, the
numerical parameters are the following: Af=10"°s; Ax=4.10 °m and
Ay =110 °m.

In order to simulate a case without phase change, we chose a Ty = 661°C
temperature, higher than Ty, (T, = 660°C). The resulting 2D temperature field is
shown in Figure 14 and particularly highlights the single directional character of the
phenomena: the temperature is uniform along all the domain width. The presence of
a heat “plateau” is the same as noticed on the macroscopic model. Figure 15 shows a
good accordance between results of the two computation models.

Thermal front
Tom
g i
= ! Metal front
6 Tsol ________
(=9 1
& ! /
o I
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| |
| T
Xr Xm
Position

Reinforcement or fiber Carbon (width 5 x 10~ °m) (Appendix)

Porosity 0.75

Matrix Pure aluminium (Appendix)
Metal injection velocity 0.04ms !

Metal injection temperature 800°C

Domain length 2% 10 *m

Domain width 2% 10" °m




Temperature (°C)

Temperature (°C)

Temperature (°C)

850

800

750

700

650 1

600

850

800 1

750 1

700

650

600

— Ax=8.10"m
seemes AX=4.10"m |-
—a— Ax=2.10"m

Metal matrix
composite
processing

821

Position

Position

Figure 12.

Test of convergence:
influence of the space
step Ax

Figure 13.

Test of convergence:
influence of the space
step Ay

Figure 14.

Numerical results of the
2D microscopic dynamic
model without phase
change
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Figure 15.

Comparison between the
2D microscopic and the 1D
macroscopic models for a
case without phase change

Figure 16.

Evolution of the maximum
difference AT for different
sections of the studied
domain
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In order to confirm this accordance, the duration of thermal equilibrium between fiber
and metal has been estimated by computing the evolution of the maximum
temperature difference AT obtained in the studied domain width within different
sections (Figure 16). For any given section S;, the curve may be divided into three
distinct parts (Figure 16):

(1) a domain where AT is equal to zero: the thermal front has not reached S; yet;

(2) a second domain where AT is different to zero; during this time, the thermal
front is passing through S;;

(3) a domain where AT is again equal to zero: the thermal front is now farther
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The second domain length is related to the thermal equilibrium time. From the example
shown in Figure 16, we may then deduce that the duration for thermal equilibrium is
less than 10~ *s for any section S;. These results confirm those obtained from the
preliminary static study and then once more justify the instantaneous equilibrium
assumption used to simulate manufacturing of MMCs.

In the case where the initial temperature of fibers is less than T, (7o = 300°C), the
temperature field (Figure 17) exhibits two temperature “plateaux” as for the
macroscopic model. Besides, the temperature is almost uniform along all the domain
width whatever the X-position.

Figure 18 shows a very good agreement between the results of the full 2D
microscopic and the 1D macroscopic models as far as the temperature field is
concerned, as well as for solidification fractions are concerned.

Influence of the longitudinal conductivity. All the results presented in this paper are
based upon the hypothesis that the longitudinal conductivity is negligible. In order to
justify the validity of this hypothesis, longitudinal conductivity has been integrated in
this microscopic dynamic model. Then, the thermal regime is evaluated thanks to the
Peclet number: Pe = (Vol)/a* where [ is equal to 2(; + &) (Figure 2) and a* is
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Figure 17.

Numerical results of the
2D microscopic dynamic
model for a case with
phase change phenomena

Figure 18.

Comparison between the
2D microscopic and the 1D
macroscopic models for a
case with phase change
phenomena




HFF
15,8

824

Figure 19.

Numerical results of the
2D microscopic dynamic
model with phase change
phenomena, taking into
account of the thermal
conductivity in the flow
direction (Pe = 10)

Figure 20.

Numerical results of the
2D microscopic dynamic
model without phase
change taking into
account of the thermal
conductivity in the flow
direction (Pe = 0.1)

the diffusivity of the equivalent medium. Numerical results show that the hypothesis is
justified when the Peclet number is large enough (Pe > 1), which is an usual estimated
value for such combined conduction/convection problem. Figure 19 shows the results
of the 2D microscopic model taking into account the conduction in the flow direction: it
is worthy of note the good agreement between these results and those obtained with
the 1D macroscopic model (see precedent section). On the other hand, our numerical
tests show that conduction in the flow direction cannot be neglected when the Peclet
number is less than 1 (Figure 20): in this case, the heat transfers by conduction are
predominant. However, the results show also that the temperature difference between
fibers and metal remains very low.

Ultimately, the hypothesis that the thermal conductivity in the flow direction is
negligible is justified for the usual conditions of MMCs production (Pe > 1). Moreover,
this study shows also that the hypothesis of instantaneous thermal equilibrium
between fibers and metal, used in the macroscopic models, is justified whatever the
Peclet number value may be.
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Conclusion and perspective

In this work, we develop a numerical modeling of heat transfer between a fibrous
reinforcement and a pure metal taking into account phase change phenomena at
the fiber scale. A first static model studies the duration for thermal equilibrium when
the fibers and the melting metal are in contact. A second dynamic model describes the
metal flow in the case of a pure metal between two slabs representing the fibrous
reinforcement. This model takes into account phase change phenomena and convection
transfers. The results of simulation tests, making use of the usual conditions of MMCs
processing, show pretty good agreement with those of macroscopic models describing
the anisothermal flow of a pure metal through a porous medium. From this coherence
and from the results of the microscopic models as well, the hypothesis of instantaneous
thermal equilibrium between fibers and metal (widely used in the literature to study
the production of MMCs by infiltration of the liquid metal through the fibrous
reinforcement) is justified.

This first numerical model at the microscopic scale deals with the study of heat
transfer between fibers and a pure metal. Next step will be the extension of this study
to the preform infiltration by a metal alloy. Injection of matrix alloy implies the
appearance of phenomena generated by segregation during phase changes. A model
has been recently developed for a static configuration (Moussa ef al., 2002). It will be
possible to extend it to the study of infiltration by an alloy, taking then into account
thermal and solutal coupled transfers inside the study domain defined in the present
work: first preliminary numerical results were obtained using such domain geometry
(Cantarel, 2004).
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Appendix

Alwminium parameters
N=90Wm 'K !

(pc)y =25 x 10°Jm 3K !
A=150Wm 'K !

(p0)s = 29 x 10°]m 3K~ !
L =093 x 10°Jm 3
w=10"3Pas

Carbon fiber parameters
A=89Wm 'K !
(po) = 3% 106Jm 3K !



